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Orthogonality



Orthogonal Sets
Definition
o A setof vectors {ay, ...,ax} in R™ is orthogonal set if each pair of
distinct vectors is orthogonal (mutually orthogonal vectors).

A basis B of an inner product space V is called an orthonormal basis of V if
a) (vyw)=0forallv+wE€B, and (mutual orthogonality)
b) ||lv|]| =1 forallv €B. (normalization)

set of n—vectors ay, ..., ay are (mutually) orthogonal if a; 1 a; for i # j
They are normalized if ||a;|| = 1 fori =1, ...,k

They are orthonormal if both hold

L OO0 O

L 1 i =]
Can be expressed using inner products as alTaj = {0 i ij’
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Two vectors u and v in R™ are orthogonal (to each other) ifu-v = 0.

Suppose V is an inner product space.
Two vectors v,w € V are called orthogonal if (v,w) = 0.

The Pythagorean Theorem

Two vectors u and v are orthogonal if and only if ||u + v||? = [|u]|? + ||v]|?



Orthogonal Sets

Example

U Zero vector is orthogonal to every vector in vector space V
L The standard basis of R™ or C" is an orthogonal set with respect to the
standard inner product.



Orthogonal Sets

Theorem

If S ={a4,...,a;} is an orthogonal set of nonzero vectors in R™, then S is
linearly independent and is a basis for the subspace spanned by S.

Proof
If k = n, then prove that S is a basis for R™



Linear combinations of orthonormal
vectors

Corollary

L A simple way to check if an n—vector y is a linear combination of the
orthonormal vectors aq, ..., ai, if and only if:

= (a{y)a; + .. + (a£Y)ak
Q For orthogonal vectors aq, -, A

y == C1a1 + .-+ Ckak

i =
J - A
a;.a;



Orthonormal vectors

Theorem

If S ={a4,...,a;} is an orthogonal set of nonzero vectors in R™, then S is
linearly independent and is a basis for the subspace spanned by S.

Proof
If k = n, then prove that S is a basis for R™



Orthonormal vectors

Theorem

Independence—dimension inequality

If the n—vectors a4, ..., a; are linearly independent, then k<n.

Orthonormal sets of vectors are linearly independent
By independence-dimension inequality, must have k < n
d  Whenk =n,a,,...,a, are an orthonormal basis



Example

O Standard unit n-vectors ey, .., e,

 The 3-vectors
0 1 [1
0 — |1
[—1] \/E [O]

 The 2-vectors shown below

1[1
il

O The standard basis in P,(x) [-1,1] (be the set of real-valued
polynomials of degree at most n.)



Linear combinations of orthonormal
vectors

Example

Write x as a linear combination of a4, a,, az?

x=|2|, a; =10} a, =—=|1|, a3 =—=|—1
3 —1 ﬁO vz 0
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Orthogonal
Subspaces



Definition

U Two subspaces W, and W, of the same space V are orthogonal, denoted by
W, L W,, if and only if each vector w; € W, is orthogonal to each vector
w, € W, for all wy,w, in W;, W, respectively:

<w,wy, >=0

Example

If the bases of two subspaces are orthogonal, it implies that the subspaces
themselves are orthogonal.
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Orthogonal
Complements




Definition

L If a vector z is orthogonal to every vector in a subspace W of R", then z is
said to be orthogonal to W.

L The set of all vectors z that are orthogonal to W is called the orthogonal
complement of W and is denoted by W+

P
Example N W
W be a plane through the origin in R3. 0<

Z
L=W'and W = L* L




Orthogonal Complements

Theorem

W+ is a subspace of R™.

Theorem
winw ={0}.

Important

We emphasize that W; and W, can be orthogonal without being complements.
W; = span((1,0,0)) and W, = span((0,1,0)).
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Gram-Schmidt
Algorithm



Gram-Schmidt (orthogonalization)
algorithm

Find orthonormal basis for span {ay, a,, ..., a;}
aj
d Geometruy: @
&IV gl%

o ¢
q%(rﬂam] L
q2 =



Gram-Schmidt (orthogonalization)
algorithm

O Find orthonormal basis for span {a4, a,, ..., a;}
O Algebra:

a

1) ql =

" layll
2)qz; =a; — (QIaz)Q1 =>4z = ”Zﬁ
T3

3)qs =az — (Q1Ta3)¢h - (QZTa3)QZ (43 = &0

K) @k = ay — (ChTak)Ch — (q?i_lak)qk_l - (qk= #Z”



Gram-Schmidt (orthogonalization)
algorithm

Example

1 1 2
Find orthogonal set fora = |0]|,b =10],c=|1

1 0 0



Gram-Schmidt (orthogonalization)
algorithm

d  Why {q1,92,..-,qx} is a orthonormal basis for span {ay, a,, ..., a;}?
o {q1,92, -,q,}y are normalized.

o {q1,9z -,qr}ris a rthogonal set
o a;is alinear compination of {q4, 92, ---, q; }

SpOn{ql, qz, -, qk} = Spon{al, az, .., ak}

gq; is alinear combination of {ay, a,, ..., a;}



Gram-Schmidt (orthogonalization)
algorithm

Given n-vectors ay, ...,a, fori =1, ..,k
1. Orthogonalization: §; = a; — (1 a;)q1 — -+ — (91-1a:)qi—1
2. Test for linear dependence:if q; = 0, quit

qi

il

» If G-S does not stop early (in step 2), a, ..., a, are linearly independent.

3. Normalization: q; =

* If G-S stops early in iteration i = j, then a; is a linear combination of ay, ..., aj_1 (so ay, ..., a; are
linearly dependent)
_ (T T
a; = (fh aj)Ch + et (CIj—1aj)Qj—1



Complexity of Gram-Schmidt
algorithm

O Gram-Schmidt algorithm gives us an explicit method for determining if a list of vectors is linearly
dependent or independent.

L What is complexity and number of flops for this algorithm?

o  0(nk?) why?
L Given n-vectors ay, ...,a fori=1, ...,k

1. Orthogonalization: §; = a; — (T a;))qy — - — (q{-1@i)qi-1
2. Test for linear dependence: if g; = 0, quit

qi

3. Normalization: gq; = T
l



Complexity of the Gram-Schmidt algorithm. We now derive an operation count
for the Gram—Schmidt algorithm. In the first step of iteration 7 of the algorithm,
i — 1 inner products

q?ai: ey q,?;lai

between vectors of length n are computed. This takes (i — 1)(2n — 1) flops. We
then use these inner products as the coefficients in 7 — 1 scalar multiplications with
the vectors ¢y, ...,q;—1. This requires n(i — 1) flops. We then subtract the i — 1

resulting vectors from a;, which requires another n(:—1) flops. The total flop count
for step 1 is

(t=1)2n—-1)+n(i-1)+n(i—-1)=4n—-1)(i—1)

flops. In step 3 we compute the norm of ¢;, which takes approximately 2n flops.
We then divide ¢; by its norm, which requires n scalar divisions. So the total flop
count for the ith iteration is (4n — 1)(i — 1) + 3n flops.

The total flop count for all % iterations of the algorithm is obtained by summing
our counts for i = 1,...., k:

k

k(kE—1
D ((4n—1)(i — 1) +3n) = (4n — 1)% + 3nk = 2nk?,
i=1
where we use the fact that
k
k(k—1
Z(i—l):1+2+---+(L:—2)+(k—1):¥‘ (5.7)
i=1

which we justify below. The complexity of the Gram-Schmidt algorithm is 2nk?;
its order is nk?. We can guess that its running time grows linearly with the lengths



Orthonormal basis

Corollary

Every finite—dimensional inner product space has an orthonormal
basis.



Conclusion

Existence of Orthonormal Bases

[ Every finite—dimensional inner product space has an orthonormal basis.

[ Since finite—dimensional inner product spaces (by definition) have a basis
consisting of finitely many vectors, and the Gram—Schmidt process tells us
how to convert that basis into an orthonormal basis, we now know that

every finite—dimensional inner product space has an orthonormal basis.



Example

Find an orthonormal basis for P,(x) in [—1, 1] with respect to the inner
product

1
(f,g) = j FOOg()dx
-1
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Projection




O

Projection

0 Finding the distance from a point B to line [ = Finding the
length of line segment BP 5
O AP: projection of AB onto the line [

-1

If uand v are vectors in R"™ and u # 0, then the projection of v

onto u is the vector proj,(v) defined by ,
u-v 785

proju(v) = (ﬁ) u

A0 ~a

L= p

The projection of v onto u

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Orthogonal Decomposition Theorem

Theorem

Let W be a subspace of V. Then for any vector y in V, there exists a unique
vector ¥ in W, and a unique vector z in W+, such that y = § + z. The vector w

is called the orthogonal projection of v onto W.

y-u y-u
u, 4o+ £

y =

Proof

2. 7
w T Yy = proj, ¥y -

The orthogonal projection of y onto W.
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Orthogonal Matrix

;f’



Orthogonal Matrix

Definition

1 A matrix is orthogonal if its columns are:
o orthogonal
o has norm 1



Orthogonal Matrix

Theorem
A matrix is orthogonal if and only if it preserves length and angle.

Proof

Proof. Let us first show that an orthogonal transformation preserves length and angles.
So, let us assume that AT A = 1 first. Now, using the properties of the transpose as well
as the definition ATA = 1, we get |Az|? = Az- Az = ATAz -2 = la-z = x-2 = |z|? for
all vectors z. Let @ be the angle between x and y and let 8 denote the angle between
Az and Ay and a the angle between = and y. Using Az - Ay = x - y again, we get
|Az||Ay| cos(B) = Az - Ay = z - y = |z||y| cos(a). Because |Az| = |z|,|Ay| = |y|, this
means cos(a) = cos(f). As we have defined the angle between two vectors to be a
number in [0, 7] and cos is monotone on this interval, it follows that o = 3.

To the converse: if A preserves angles and length, then v, = Aey, - - v, = Ae, form an
orthonormal basis. By looking at B = AT A this shows off diagonal entries of B are 0
and diagonal entries of B are 1. The matrix A is orthogonal. O




Square Orthogonal Matrix

O Columns of A are orthonormal & ATA =1

O Square matrix with orthonormal columns is an orthogonal matrix
o Columns and rows are orthonormal vectors
o ATA=44T =1

o Is necessarily invertible with inverse AT = A™1



Square Orthogonal Matrix

Example

Q Identity matrix ITI =1

O Rotation matrix

RTR — [ cos 0 sin@] [cos@ —sin@] _

—sin@ cosf@llsin@ cos@

[ cos?%0 + sin?6 —cosOsinf + Sinecose] _ [1 0] _ |
—sinfcosO + cosOsinb sin®6 + cos?6 0 1



Square Orthogonal Matrix

Example

L Reflection matrix

cos(20) sin(20) T cos(28) sin(260) 1 _
|sin(20) —cos(ZH)l [sin(20) —cos(20)]

cos? (20) + sin?(26) cos (20) sin(20) — sin(260) cos(26)( _[1 0] _ ;
sin(20) cos(26) — cos(26) sin(26) sin2(26) + cos? (20) B [0 1]

Theorem

Every 2 X 2 orthogonal matrices can be expressed as Rotation or Reflection, or a composition of

them.
proof?



Tall Orthogonal Matrix

e AER™ " m>n

e The inner products of the columns give the identity, so ATA = I,

1 i=3j
T
(A" A)i; = (ai, ;) = o,
0 i#]
e AAT is a projection matrix onto the column space of A. If m>n then AAT is not full
rank. Therefore, AAT = I,

rank(AA”) < min(rank(A), rank(A7)) = rank(4) < n

But remember: AAT € R™*™. So the maximum possible rank of AA” is n, which is strictly less than m.



Wide Orthogonal Matrix

e AER™ " m<n

e The inner products of the rows give the identity, so AAT = I,

| 1 e
(AAT)i; = (ai,aj) = e
0 ifi+#j

e ATAis a projection matrix onto the row space of A. If m<n then ATA is not full rank.
Therefore, ATA # 1,

rank(A” A) < min(rank(A), rank(A7)) = rank(4) < m

But remember: AT A € R™*",

So the maximum possible rank of AT A'is m, which is strictly less than n.



Properties of Orthogonal Matrix

If A € R™ ™ has orthonormal columns, then the linear function f(x)=Ax:

a P i duct:
reserves inner produc e T

(Ax)"(Ay) = x"y preserving properties of
Q Preserves norm: input
|Ax|| = [[x]|
Q Preserves distances:
|Ax — Ay|| = [[x — yll
O Preserves angels:

(AX)T(Ay)
£(Ax,Ay) = arccos (—”A’;””A;’“) = arccos (” ””y") £(x,y)




Four Fundamental Subspaces of Matrix Space

Proof that:

o

o

C(AT) L N(4)
C(A) L N(AT)

A
n
C(AT) R > R™M c(4)
Column
All ATy x i Y space
dim=r \L - All Ax
\ b dim=r

dim=n-r dim=m-r
Left null
Null space
u s_pace ATy = 0
Ax =0

N(4) Ax=A(x, +x, )= Ax_+Ax, = Ax, N(4T)
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QR Factorization
(QR Decomposition)



Gram-Schmidt in Matrix Notation

Important
Run Gram-Schmidt on columns ay, ..., a; of n X k matrix A:

~

_ q1
G4l
= a; = 1G1llq,

qd1 = a4, q1

~

~ q>
q; = a4 — (CI{az)Ch, q2= ”qz”

= a, = (g1 az)q; + 1132 1lq;

~

. o
%=~ (a{adq == (@a0)di-1 4=
l

a; = (qTa)q, + -+ (q_1a;)qi—1 + 13l q;




O

Review

® Matrix-Matrix Multiplication
As a set of matrix-vector products.

I |
C=AB=A[b1 b, - b,
I I

| | |
Ab, Ab, - Ab,

Here the th column of Cis given by the matrix-vector product with the vector on the right, ¢; = Ab;. These matrix-vector
products can in turn be interpreted using both viewpoints given in the previous subsection.

® Matrix-Vector Multiplication
If we write A by columns, then we have:

X1

. |
x2
y=Ax=|ar a; - an|| | =lag]xg + [aglxy + -+ [an]x, .

| |,
o yisalinear combination of the columns A.

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Gram-Schmidt in Matrix Notation

Important
a; = [1g111q1

a, = (g1 a2)q; + 11G21lq»

Ak = (%Tak)(h + e+ (Q£—1ak)CIk—1 + Gl qx

Il qla; -~ 91%

0 [Igll - qz%
[ar ax .. a]=[%1 92 - Q]| : : :

0 0 7 qi_qak

00 1|l |

Apxk = Qnxi X Rexk



Gram-Schmidt in Matrix Notation

Important

1.Run Gram-Schmidt on columns ay, ..., a; of n X k matrix A
2.1f columns are linearly independent, get orthonormal g, ..., g
3.Define n X k matrix Q with columns q4, ..., g

4. 0TQ =1

5.From Gram-Schmidt algorithm

a; = (q1a;)q; + -+ (CIiT—1ai)Cli—1 + +1G;llq;
= Ryiq1 + -+ Riq;
With le = qlTa] for i <j and R;; = ”ql”

6.Defining R;; = 0 for i > j we have A = QR
7. R is upper triangular, with positive diagonal entries



QR Factorization
Definition

A factorization of a matrix A as A = QR where Factors satisfy QTQ = I, R upper

triangular with positive diagonal entries, is called a QR factorization of A.

Suppose A is a square matrix with linearly independent columns. Then there
exist unique matrices Q and R such that Q is unitary, R is upper triangular

with only positive numbers on its diagonal, and
Rj =< ay,q; >

A= QR

The QR factorization of a matrix :
0 Can be computed using Gram-Schmidt algorithm (or some variations)

L Has a huge number of uses, which we’ll see soon



QR Factorization

Important

To find QR decomposition:

QQ: Use Gram-Schmidt to find orthonormal basis for column space of A
QLet R = QTA

DOR R]k =<< ag, q] >

QIfdisa square matrix, then Q is square with orthonormal columns (orthogonal matrix)



QR Factorization

Theorem

if AeR™ ™ has linearly independent columns then it can be factored as
A=0R

Q-factor

Q0 is m x n with orthonormal columns (QTQ = 1)

QIf Ais square (m = n), then Q is orthogonal (QTQ = QQT = 1)

R-factor

Q R is nx n, upper triangular, with nonzero diagonal elements
Q R is nonsingular (diagonal elements are nonzero)



QR Decomposition

Example

| —|
— NLN D~
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Il
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O QR:



Generalization of QR Factorization Ao = [ ay a3 @y as ag)

V
Linear Independent

( a, = 1191

a; = Az1q1 + A229>

asz = az1qq + azq>
Ay = Ay41q1 + Q4292 + Q4393
as = As51qq + A52qQ + As5343
(d6 = U141 T Q6242 T Q6343

A

Block upper triangular matrix

ay1 QA1 QAz17 Ag1 0451 Qpq

[a1 ax a3 a4 as Ggl=1[91 492 q3]| 0 ay,, asz, Qa2 Qas2 Qe
0 0 0 Q3 0Gs3 Qg3

Ayxe = Q4X R3y6
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