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Orthogonal Sets

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

● A set of vectors 𝑎1, … , 𝑎𝑘 in 𝑅𝑛 is orthogonal set if each pair of 
distinct vectors is orthogonal (mutually orthogonal vectors).

Definition

A basis 𝐵 of an inner product space 𝑉 is called an orthonormal basis of 𝑉 if
a) 𝐯,𝐰 = 0 for all 𝐯 ≠ 𝒘 ∈ 𝐵, and         (mutual orthogonality)
b) 𝐯 = 1 for all 𝐯 ∈ 𝐵.                         (normalization)

❑ set of n-vectors 𝑎1, … , 𝑎𝑘 are (mutually) orthogonal if 𝑎𝑖 ⊥ 𝑎𝑗 for 𝑖 ≠ 𝑗

❑ They are normalized if 𝑎𝑖 = 1 for 𝑖 = 1,… , 𝑘

❑ They are orthonormal if both hold

❑ Can be expressed using inner products as       𝑎𝑖
𝑇𝑎𝑗 = ቊ

1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗
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Orthogonal Sets

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

● Geometry

● Algebra

Two vectors 𝐮 and 𝐯 in ℝ𝑛 are orthogonal (to each other) if 𝐮 ∙ 𝐯 = 𝟎.

Suppose 𝑉 is an inner product space. 

Two vectors 𝐯,𝐰 ∈ 𝑉 are called orthogonal if 𝐯,𝐰 = 0. 

The Pythagorean Theorem

Two vectors 𝐮 and 𝐯 are orthogonal if and only if 𝐮 + 𝐯 2 = 𝐮 2 + 𝐯 2

https://youtu.be/dqdSzqsm7bY
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Orthogonal Sets

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

❑ Zero vector is orthogonal to every vector in vector space 𝑉
❑ The standard basis of ℝ𝑛 or ℂ𝑛 is an orthogonal set with respect to the 

standard inner product.
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Orthogonal Sets

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

If 𝑆 = {𝑎1, … , 𝑎𝑘} is an orthogonal set of nonzero vectors in 𝑅𝑛, then 𝑆 is 
linearly independent and is a basis for the subspace spanned by S.

Proof

If k = n, then prove that S is a basis for 𝑅𝑛
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Linear combinations of orthonormal 
vectors

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Corollary

❑ A simple way to check if an n-vector y is a linear combination of the 
orthonormal vectors 𝑎1, … , 𝑎𝑘 , if and only if:

𝑦 = 𝑎1
𝑇𝑦 𝑎1 + … + 𝑎𝑘

𝑇𝑦 𝑎𝑘
❑ For orthogonal vectors 𝑎1, … , 𝑎𝑘:

𝑦 = 𝑐1𝑎1 +⋯+ 𝑐𝑘𝑎𝑘

𝑐𝑗 =
𝑦. 𝑎𝑗

𝑎𝑗 . 𝑎𝑗
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❑ Orthonormal sets of vectors are linearly independent 
❑ By independence-dimension inequality, must have 𝑘 ≤ 𝑛

❑ When 𝑘 = 𝑛, 𝑎1, … , 𝑎𝑛 are an orthonormal basis

Orthonormal vectors

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Independence-dimension inequality

If the n-vectors 𝑎1, … , 𝑎𝑘 are linearly independent, then 𝑘 ≤ 𝑛.

Theorem

If 𝑆 = {𝑎1, … , 𝑎𝑘} is an orthogonal set of nonzero vectors in 𝑅𝑛, then 𝑆 is 
linearly independent and is a basis for the subspace spanned by S.

Proof

If k = n, then prove that S is a basis for 𝑅𝑛
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❑ Orthonormal sets of vectors are linearly independent 
❑ By independence-dimension inequality, must have 𝑘 ≤ 𝑛

❑ When 𝑘 = 𝑛, 𝑎1, … , 𝑎𝑛 are an orthonormal basis

Orthonormal vectors

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

Independence-dimension inequality

If the n-vectors 𝑎1, … , 𝑎𝑘 are linearly independent, then 𝑘≤𝑛.



11CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

❑ Standard unit n-vectors 𝑒1, . . , 𝑒𝑛
❑ The 3-vectors

0
0
−1

,
1

2

1
1
0
,

1

2

1
−1
0

❑ The 2-vectors shown below

❑ The standard basis in  𝑃𝑛(𝑥) [−1,1] (be the set of real-valued 

polynomials of degree at most n.)
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Linear combinations of orthonormal 
vectors

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

Write 𝑥 as a linear combination of 𝑎1, 𝑎2, 𝑎3?

𝑥 =
1
2
3

,  𝑎1 =
0
0
−1

, 𝑎2 =
1

2

1
1
0

, 𝑎3 =
1

2

1
−1
0
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Orthogonal Subspaces

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

❑ Two subspaces 𝑊1 and 𝑊2 of the same space 𝑉 are orthogonal, denoted by
𝑊1 ⊥ 𝑊2, if and only if each vector 𝑤1 ∈ 𝑊1 is orthogonal to each vector
𝑤2 ∈ 𝑊2 for all 𝑤1, 𝑤2 in 𝑊1,𝑊2 respectively:

< 𝑤1, 𝑤2 >= 0

Example

If the bases of two subspaces are orthogonal, it implies that the subspaces 
themselves are orthogonal.
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Orthogonal Complements

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

❑ If a vector z is orthogonal to every vector in a subspace W of 𝑅𝑛, then z is
said to be orthogonal to W.

❑ The set of all vectors z that are orthogonal to W is called the orthogonal
complement of W and is denoted by 𝑊⊥

Example

W be a plane through the origin in ℝ3. 

𝐿 = 𝑊⊥and 𝑊 = 𝐿⊥
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Orthogonal Complements

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important

We emphasize that 𝑊1 and 𝑊2 can be orthogonal without being complements. 

𝑊1 = 𝑠𝑝𝑎𝑛( 1, 0, 0 ) and 𝑊2 = 𝑠𝑝𝑎𝑛( 0, 1, 0 ).

Theorem

𝑊⊥ is a subspace of ℝ𝑛.

Theorem

𝑊⊥ ∩𝑊 = {𝟎} .
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❑ Find orthonormal basis for span {𝑎1, 𝑎2, … , 𝑎𝑘}
❑ Geometry:

Gram–Schmidt (orthogonalization) 
algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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❑ Find orthonormal basis for span {𝑎1, 𝑎2, … , 𝑎𝑘}
❑ Algebra:

Gram–Schmidt (orthogonalization) 
algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

1) 𝑞1 =
𝑎1

𝑎1

2) ෦𝑞2 = 𝑎2 − 𝑞1
𝑇𝑎2 𝑞1 → 𝑞2 =

෦𝑞2

෦𝑞2

3) ෦𝑞3 = 𝑎3 − 𝑞1
𝑇𝑎3 𝑞1 − 𝑞2

𝑇𝑎3 𝑞2 → 𝑞3 =
෦𝑞3

෦𝑞3

.

.

.

k) ෦𝑞𝑘 = 𝑎𝑘 − 𝑞1
𝑇𝑎𝑘 𝑞1 −⋯− 𝑞𝑘−1

𝑇 𝑎𝑘 𝑞𝑘−1 → 𝑞𝑘=
෦𝑞𝑘

෦𝑞𝑘



23

Gram–Schmidt (orthogonalization) 
algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

Find orthogonal set for 𝑎 =
1
0
1
, 𝑏 =

1
0
0

, c =
2
1
0
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❑ Why  {𝑞1, 𝑞2, … , 𝑞𝑘} is a orthonormal basis for span {𝑎1, 𝑎2, … , 𝑎𝑘}?

○ {𝑞1, 𝑞2, … , 𝑞𝑘} are normalized.
○ {𝑞1, 𝑞2, … , 𝑞𝑘} is a orthogonal set
○ 𝑎𝑖 is a linear combination of {𝑞1, 𝑞2, … , 𝑞𝑖} 

span{𝑞1, 𝑞2, … , 𝑞𝑘} = span{𝑎1, 𝑎2, … , 𝑎𝑘}

❑ 𝑞𝑖 is a linear combination of {𝑎1, 𝑎2, … , 𝑎𝑖} 

Gram–Schmidt (orthogonalization) 
algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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❑ Given n-vectors 𝑎1, … , 𝑎𝑘 for 𝑖 = 1, … , 𝑘

1. Orthogonalization: 𝑞𝑖 = 𝑎𝑖 − 𝑞1
𝑇𝑎𝑖 𝑞1 −⋯− 𝑞𝑖−1

𝑇 𝑎𝑖 𝑞𝑖−1

2. Test for linear dependence: if 𝑞𝑖 = 0, quit

3. Normalization: 𝑞𝑖 =
෦𝑞𝑖

෦𝑞𝑖

Gram–Schmidt (orthogonalization) 
algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note

• If G-S does not stop early (in step 2), 𝑎1, … , 𝑎𝑘 are linearly independent.

• If G-S stops early in iteration 𝑖 = 𝑗, then 𝑎𝑗 is a linear combination of 𝑎1, … , 𝑎𝑗−1 (so 𝑎1, … , 𝑎𝑘 are 

linearly dependent)
𝑎𝑗 = 𝑞1

𝑇𝑎𝑗 𝑞1 +⋯+ 𝑞𝑗−1
𝑇 𝑎𝑗 𝑞𝑗−1
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❑ Gram-Schmidt algorithm gives us an explicit method for determining if a list of vectors is linearly 
dependent or independent.

❑ What is complexity and number of flops for this algorithm?
○ 𝑂(𝑛𝑘2) why?

❑ Given n-vectors 𝑎1, … , 𝑎𝑘 for 𝑖 = 1, … , 𝑘

1. Orthogonalization: 𝑞𝑖 = 𝑎𝑖 − 𝑞1
𝑇𝑎𝑖 𝑞1 −⋯− 𝑞𝑖−1

𝑇 𝑎𝑖 𝑞𝑖−1

2. Test for linear dependence: if 𝑞𝑖 = 0, quit

3. Normalization: 𝑞𝑖 =
෦𝑞𝑖

෦𝑞𝑖

Complexity of Gram–Schmidt 
algorithm

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani



28CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani



29

Orthonormal basis

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Corollary
Every finite-dimensional inner product space has an orthonormal 
basis.
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Conclusion

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Existence of Orthonormal Bases

❑ Every finite-dimensional inner product space has an orthonormal basis.

❑ Since finite-dimensional inner product spaces (by definition) have a basis 
consisting of finitely many vectors, and the Gram-Schmidt process tells us 
how to convert that basis into an orthonormal basis, we now know that 

every finite-dimensional inner product space has an orthonormal basis.
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Example

Find an orthonormal basis for 𝑃2 𝑥 𝑖𝑛 −1, 1 with respect to the inner 
product

𝑓, 𝑔 = න
−1

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Projection

05



34

❑ Finding the distance from a point 𝐵 to line 𝑙 = Finding the 
length of line segment 𝐵𝑃

❑ 𝐴𝑃: projection of 𝐴𝐵 onto the line 𝑙

Projection

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

If u and v are vectors in ℝ𝑛 and 𝐮 ≠ 𝟎, then the projection of v 
onto u is the vector 𝑝𝑟𝑜𝑗𝐮 𝐯 defined by

𝑝𝑟𝑜𝑗𝐮 𝐯 =
𝐮 ∙ 𝐯

𝐮 ∙ 𝐮
𝐮
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Orthogonal Decomposition Theorem

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem

Let W be a subspace of V. Then for any vector y in V, there exists a unique 
vector ො𝐲 in W, and a unique vector z in 𝑾⊥, such that y = ො𝐲 + z. The vector w 
is called the orthogonal projection of v onto W.

Proof

ො𝐲 =
𝐲 ∙ 𝐮1
𝐮1. 𝐮1

𝐮1 +⋯+
𝐲 ∙ 𝐮p

𝐮p ∙ 𝐮p
𝐮p
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Orthogonal Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

❑ A matrix is orthogonal if its columns are:
o orthogonal
o has norm 1
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Orthogonal Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Theorem
A matrix is orthogonal if and only if it preserves length and angle.

Proof
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Square Orthogonal Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Note

❑ Columns of A are orthonormal 𝐴𝑇𝐴 = 𝐼

❑ Square matrix with orthonormal columns is an orthogonal matrix

o Columns and rows are orthonormal vectors

o 𝐴𝑇𝐴 = 𝐴𝐴𝑇 = 𝐼

o Is necessarily invertible with inverse 𝐴𝑇 = 𝐴−1
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Example

❑ Identity matrix 𝐼𝑇𝐼 = 𝐼

❑ Rotation matrix

Square Orthogonal Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

𝑅𝑇𝑅 =
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

=

𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃

=
1 0
0 1

= 𝐼
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Theorem

Every 2 × 2 orthogonal matrices can be expressed as Rotation or Reflection, or a composition of 
them.
proof?

❑Reflection matrix

Example

cos(2𝜃) sin(2𝜃)
sin(2𝜃) −cos(2𝜃)

𝑇 cos(2𝜃) sin(2𝜃)
sin(2𝜃) −cos(2𝜃)

=

cos2 2𝜃 + sin2(2𝜃) 𝑐𝑜𝑠 2𝜃 sin 2𝜃 − sin 2𝜃 cos(2𝜃)

sin 2𝜃 cos 2𝜃 − cos 2𝜃 sin(2𝜃) sin 2 2𝜃 + cos2 2𝜃
=

1 0
0 1

= 𝐼

Square Orthogonal Matrix
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● 𝐴 ∈ ℝ𝑚×𝑛, 𝑚 > 𝑛

● The inner products of the columns give the identity, so 𝑨𝑻𝑨 = 𝑰𝒏

● 𝐴𝐴𝑇 is a projection matrix onto the column space of 𝐴. If 𝑚>𝑛 then 𝐴𝐴𝑇 is not full 
rank. Therefore, 𝑨𝑨𝑻 ≠ 𝑰𝒎

Tall Orthogonal Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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● 𝐴 ∈ ℝ𝑚×𝑛, 𝑚 < 𝑛

● The inner products of the rows give the identity, so 𝑨𝑨𝑻 = 𝑰𝒎

● 𝐴𝑇𝐴 is a projection matrix onto the row space of 𝐴. If 𝑚<𝑛 then 𝐴𝑇𝐴 is not full rank. 
Therefore, 𝑨𝑻𝑨 ≠ 𝑰𝒏

Wide Orthogonal Matrix

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Properties of Orthogonal Matrix
Note

If 𝐴 ∈ ℝ𝑚×𝑛 has orthonormal columns, then the linear function 𝑓(𝑥)=𝐴𝑥:

❑ Preserves inner product:

𝐴𝑥 𝑇 𝐴𝑦 = 𝑥𝑇𝑦

❑ Preserves norm:
ԡ ԡ𝐴𝑥 = ԡ ԡ𝑥

❑ Preserves distances:
ԡ ԡ𝐴𝑥 − 𝐴𝑦 = ԡ ԡ𝑥 − 𝑦

❑ Preserves angels:
∠ 𝐴𝑥, 𝐴𝑦 = arccos

𝐴𝑥 𝑇 𝐴𝑦

ԡ ԡ𝐴𝑥 ԡ ԡ𝐴𝑦
= arccos

𝑥𝑇𝑦

ԡ ԡ𝑥 ԡ ԡ𝑦
= ∠ 𝑥, 𝑦

This is a mapping with 
preserving properties of 
input
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● Proof that:
○ 𝐶 𝐴𝑇 ⊥ 𝑁 𝐴

○ 𝐶 𝐴 ⊥ 𝑁 𝐴𝑇

Four Fundamental Subspaces of Matrix Space

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

ℝ𝑛 ℝ𝑚
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Gram–Schmidt in Matrix Notation

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important
Run Gram-Schmidt on columns 𝑎1, … , 𝑎𝑘 of 𝑛 × 𝑘 matrix 𝐴:

𝑞1 = 𝑎1, 𝑞1 =
𝑞1
𝑞1
⟹ 𝑎1 = 𝑞1 𝑞1

𝑞2 = 𝑎2 − 𝑞1
𝑇𝑎2 𝑞1, 𝑞2=

𝑞2
𝑞2

⇒ 𝑎2 = 𝑞1
𝑇𝑎2 𝑞1 + 𝑞2 𝑞2

⋮

𝑞𝑖 = 𝑎𝑖 − 𝑞1
𝑇𝑎𝑖 𝑞1 −⋯− 𝑞𝑖−1

𝑇 𝑎𝑖 𝑞𝑖−1, 𝑞𝑖 =
𝑞𝑖
𝑞𝑖

𝑎𝑖 = 𝑞1
𝑇𝑎𝑖 𝑞1 +⋯+ 𝑞𝑖−1

𝑇 𝑎𝑖 𝑞𝑖−1 + 𝑞𝑖 𝑞𝑖
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● Matrix-Matrix Multiplication
As a set of matrix-vector products.

𝐶 = 𝐴𝐵 = 𝐴

|
𝑏1
|

|
𝑏2
|

⋯

|
𝑏𝑝
|

=

|
𝐴𝑏1
|

|
𝐴𝑏2
|

⋯

|
𝐴𝑏𝑝
|

Here the ith column of C is given by the matrix-vector product with the vector on the right, 𝑐𝑖 = 𝐴𝑏𝑖 . These matrix-vector 
products can in turn be interpreted using both viewpoints given in the previous subsection.

● Matrix-Vector Multiplication
If we write A by columns, then we have:

𝑦 = 𝐴𝑥 =
|
𝑎1
|

|
𝑎2
|

⋯
|
𝑎𝑛
|

𝑥1
𝑥2
⋮
𝑥𝑛

= 𝑎1 𝑥1 + 𝑎2 𝑥2 +⋯+ 𝑎𝑛 𝑥𝑛 .

○ y is a linear combination of the columns A.

Review

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Gram–Schmidt in Matrix Notation

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important

𝑎1 = 𝑞1 𝑞1

𝑎2 = 𝑞1
𝑇𝑎2 𝑞1 + 𝑞2 𝑞2

⋮
𝑎𝑘 = 𝑞1

𝑇𝑎𝑘 𝑞1 +⋯+ 𝑞𝑘−1
𝑇 𝑎𝑘 𝑞𝑘−1 + 𝑞𝑘 𝑞𝑘

𝑎1 𝑎2 … 𝑎𝑘 = 𝑞1 𝑞2 … 𝑞𝑘

𝑞1
0
⋮
0
0

𝑞1
𝑇𝑎2
𝑞2
⋮
0
0

⋯
⋯
⋱
⋯
⋯

𝑞1
𝑇𝑎𝑘
𝑞2
𝑇𝑎𝑘
⋮

𝑞𝑘−1
𝑇 𝑎𝑘
𝑞𝑘

𝐴𝑛×𝑘 = 𝑄𝑛×𝑘 × 𝑅𝑘×𝑘
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Gram–Schmidt in Matrix Notation

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Important

1.Run Gram-Schmidt on columns 𝑎1, … , 𝑎𝑘 of n × 𝑘 matrix 𝐴
2.If columns are linearly independent, get orthonormal 𝑞1, … , 𝑞𝑘
3.Define n × 𝑘 matrix 𝑄 with columns 𝑞1, … , 𝑞𝑘
4. 𝑄𝑇𝑄 = 𝐼
5.From Gram-Schmidt algorithm

𝑎𝑖 = 𝑞1
𝑇𝑎𝑖 𝑞1 +⋯+ 𝑞𝑖−1

𝑇 𝑎𝑖 𝑞𝑖−1 ++ 𝑞𝑖 𝑞𝑖
= 𝑅1𝑖𝑞1 +⋯+ 𝑅𝑖𝑖𝑞𝑖

With 𝑅1𝑗 = 𝑞𝑖
𝑇𝑎𝑗 for 𝑖 < 𝑗 and  𝑅𝑖𝑖 = 𝑞𝑖

6.Defining 𝑅𝑖𝑗 = 0 for 𝑖 > 𝑗 we have 𝐴 = 𝑄𝑅

7. 𝑅 is upper triangular, with positive diagonal entries
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Note

The QR factorization of a matrix :
❑ Can be computed using Gram-Schmidt algorithm (or some variations)
❑ Has a huge number of uses, which we’ll see soon

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Definition

A factorization of a matrix 𝐴 as   𝐴 = 𝑄𝑅 where Factors satisfy 𝑄𝑇𝑄 = 𝐼, 𝑅 upper 

triangular with positive diagonal entries, is called a QR factorization of 𝐴.

𝑅𝑗𝑘 =< 𝑎𝑘, 𝑞𝑗 >

QR Factorization
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Important

To find QR decomposition:

❑𝑄: Use Gram-Schmidt to find orthonormal basis for column space of 𝐴

❑Let 𝑅 = 𝑄𝑇𝐴

❑OR: 𝑅𝑗𝑘 =< 𝑎𝑘, 𝑞𝑗 >

❑ If 𝐴 is a square matrix, then 𝑄 is square with orthonormal columns (orthogonal matrix)

QR Factorization
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if 𝐴𝜖ℝ𝑚×𝑛 has linearly independent columns then it can be factored as 

𝐴 = 𝑄𝑅

Q-factor
❑𝑄 is 𝑚 × 𝑛 with orthonormal columns 𝑄𝑇𝑄 = 𝐼

❑ If 𝐴 is square (𝑚 = 𝑛), then 𝑄 is orthogonal 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼

R-factor
❑ 𝑅 is n× 𝑛, upper triangular, with nonzero diagonal elements
❑ 𝑅 is nonsingular (diagonal elements are nonzero)

Theorem

QR Factorization
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QR Decomposition

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani

Example

𝐴 =

−1
1

−1
1

−1
3

−1
3

1
3
5
7

𝑞1 =
1

2

−1
1

−1
1

, 𝑞2 =
1

2

1
1
1
1

, 𝑞3 =
1

2

−1
−1
1
1

, 𝑞1 = 2, 𝑞2 = 2, 𝑞3 = 4

❑ QR :
−1
1

−1
1

−1
3

−1
3

1
3
5
7

= 

−
1

2
1

2

−
1

2
1

2

1

2
1

2
1

2
1

2

−
1

2

−
1

2
1

2
1

2

2 4 2
0 2 8
0 0 4
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𝐴4×6 = 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

𝑎1 = 𝑎11𝑞1
𝑎2 = 𝑎21𝑞1 + 𝑎22𝑞2
𝑎3 = 𝑎31𝑞1 + 𝑎32𝑞2

𝑎4 = 𝑎41𝑞1 + 𝑎42𝑞2 + 𝑎43𝑞3
𝑎5 = 𝑎51𝑞1 + 𝑎52𝑞2 + 𝑎53𝑞3
𝑎6 = 𝑎61𝑞1 + 𝑎62𝑞2 + 𝑎63𝑞3

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 = 𝑞1 𝑞2 𝑞3

𝑎11 𝑎21 𝑎31
0 𝑎22 𝑎32
0 0 0

𝑎41 𝑎51 𝑎61
𝑎42 𝑎52 𝑎62
𝑎43 𝑎53 𝑎63

𝐴4×6 = 𝑄4×3 × 𝑅3×6

Linear Independent

Block upper triangular matrix 

Generalization of QR Factorization
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❑ Chapter 1: Advanced Linear and Matrix Algebra, Nathaniel 
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❑ Chapter 6: Linear Algebra David Cherney
❑ Linear Algebra and Optimization for Machine Learning
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